- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Choi, Meena (4)
-
Huang, Ting (3)
-
Vitek, Olga (3)
-
Bandeira, Nuno (2)
-
Dunkley, Tom (2)
-
Perez-Riverol, Yasset (2)
-
Tsai, Tsung-Heng (2)
-
Tzouros, Manuel (2)
-
Verschueren, Erik (2)
-
Audain, Enrique (1)
-
Bai, Mingze (1)
-
Banfai, Balazs (1)
-
Bernhardt, Oliver M. (1)
-
Bouyssié, David (1)
-
Brazma, Alvis (1)
-
Carver, Jeremy (1)
-
Chiva, Cristina (1)
-
Dai, Chengxin (1)
-
Deng, Jingwen (1)
-
Deutsch, Eric W. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Huang, Ting; Choi, Meena; Tzouros, Manuel; Golling, Sabrina; Pandya, Nikhil Janak; Banfai, Balazs; Dunkley, Tom; Vitek, Olga (, Molecular & Cellular Proteomics)
-
Choi, Meena; Carver, Jeremy; Chiva, Cristina; Tzouros, Manuel; Huang, Ting; Tsai, Tsung-Heng; Pullman, Benjamin; Bernhardt, Oliver M.; Hüttenhain, Ruth; Teo, Guo Ci; et al (, Nature Methods)null (Ed.)
-
Dai, Chengxin; Füllgrabe, Anja; Pfeuffer, Julianus; Solovyeva, Elizaveta M.; Deng, Jingwen; Moreno, Pablo; Kamatchinathan, Selvakumar; Kundu, Deepti Jaiswal; George, Nancy; Fexova, Silvie; et al (, Nature Communications)Abstract The amount of public proteomics data is rapidly increasing but there is no standardized format to describe the sample metadata and their relationship with the dataset files in a way that fully supports their understanding or reanalysis. Here we propose to develop the transcriptomics data format MAGE-TAB into a standard representation for proteomics sample metadata. We implement MAGE-TAB-Proteomics in a crowdsourcing project to manually curate over 200 public datasets. We also describe tools and libraries to validate and submit sample metadata-related information to the PRIDE repository. We expect that these developments will improve the reproducibility and facilitate the reanalysis and integration of public proteomics datasets.more » « less
An official website of the United States government
